Abstract

To the best of our knowledge, we demonstrate for the first time the generation of photon number squeezing by spectral filtering for ultrabroadband light generated by microstructure fibers at 800 nm. A maximum squeezing of 4.6 dB is observed, corresponding to 10.3 dB after correcting for detection losses. We numerically analyzed the quantum dynamics of ultrashort laser pulse propagation through optical fibers by solving a nonlinear quantum Schrödinger equation that included Raman scattering, especially for the quantum correlation of photon number fluctuation among frequency modes in broadband pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.