Abstract
We report the observation of photon generation in a microwave cavity with a time-dependent boundary condition. Our system is a microfabricated quarter-wave coplanar waveguide cavity. The electrical length of the cavity is varied by using the tunable inductance of a superconducting quantum interference device. It is measured at a temperature significantly less than the resonance frequency. When the length is modulated at approximately twice the static resonance frequency, spontaneous parametric oscillations of the cavity field are observed. Time-resolved measurements of the dynamical state of the cavity show multiple stable states. The behavior is well described by theory. Our results may be considered a preliminary step towards demonstrating the dynamical Casimir effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.