Abstract

The photolysis of hop-derived trans-iso-alpha-acids (2a-c; naturally occurring bitter compounds present in beer) and of trans-tetrahydroiso-alpha-acids (5a-c; semi-synthetic advanced hop products) was investigated at 300 nm in methanol. The complex photoreaction mixtures were separated by high-performance liquid chromatography (HPLC) using diode array detection and the major photoreaction products were identified by HPLC-mass spectroscopy. The main part of the mixture consisted of compounds, which originated from recombination of radicals derived from Norrish Type I photocleavage of the acyloin moiety in both trans-iso-alpha-acids and trans-tetrahydroiso-alpha-acids. The results confirm the intermediacy of radicals that were previously identified by time-resolved electron paramagnetic resonance and they bear relevance to the formation of the lightstruck flavour that is generated when beer is exposed to light. Additionally, new photoproducts were found that are formed by photochemical reactions hitherto undiscovered in hop chemistry, including photoenolization of trans-isohumulone (2a) leading to trans-alloisohumulone (13a) and a retro oxa-di-pi-methane rearrangement in trans-isohumulone (2a) and trans-tetrahydroiso-alpha-acids to humulone (1a) and tetrahydro-alpha-acids (23a-b), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.