Abstract

A core-shell structured multifunctional carrier with nanocrystalline silicon (ncSi) as the core and a water-soluble block copolymer as the shell based on a poly(methacrylic acid) (PMAA) inner shell and polyethylene glycol (MPEG) outer shell (ncSi-MPM) was synthesized for drug delivery. The morphology, composition, and properties of the resulting ncSi-MPM were determined by comprehensive multianalytical characterization, including (1)H NMR spectroscopy, FTIR spectroscopy, XPS spectroscopy, TEM, DLS, and fluorescence spectroscopy analyses. The size of the resulting ncSi-MPM nanocarriers ranged from 40 to 110 nm under a simulated physiological environment. The loading efficiency of model drug doxorubicin (DOX) was approximately 6.1-7.4 wt % for ncSi-MPM and the drug release was pH controlled. Cytotoxicity studies demonstrated that DOX-loaded ncSi-MPM showed high anticancer activity against Hela cells. Hemolysis percentages (<2%) of ncSi-MPM were within the scope of safe values. Fluorescent imaging studies showed that the nanocarriers could be used as a tracker at the cellular level. Integration of the above functional components may result in ncSi-MPM becoming a promising multifunctional carrier for drug delivery and biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.