Abstract

Since the visible photoluminescence (PL) in porous Si was observed by Canham, much attention has been paid to the light emission from silicon-based materials. In this work, luminescent amorphous silicon nitride films were prepared by very-high-frequency plasma enhanced chemical vapor deposition technique using ammonia, silane and hydrogen as source gases at a low temperature of 50 °C. It is found that the films exhibit strong visible light emissions with ranging from green to red region. Photoluminescence spectra show that the emission peaks as well as intensity strongly depends on the flow rates of ammonia. Combining with the analyses of Fourier transform infrared absorption spectra and the transmission spectra, it is suggested that the light emissions are originated from the radiative recombination in the band-tail states of amorphous silicon nitride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.