Abstract

Photoluminescence spectra and nature of light-emitting centers of a porous silicon (por-Si) samples are given. The por- Si samples had high-ordered mosaic structure, which was received under long anodic etching p-Si(100) in electrolyte with an internal current source. The photoluminescence spectra were monitored at room temperature before and after annealing in air and vacuum. Comparative analysis of photoluminescence spectra of the por-Si samples annealed at different temperatures in air and vacuum shows that the thermal annealing conditions has significant effect on the intensity and spectral content of the photoluminescence spectra. The nature of the luminescence emission centers at different temperatures and annealing conditions was discussed.

Highlights

  • Today, a large number of works dedicated to the study of photoluminescence (PL) properties of porous silicon (por-Si), promising for practical applications, such as LEDs

  • Comparative analysis of photoluminescence spectra of the por-Si samples annealed at different temperatures in air and vacuum shows that the thermal annealing conditions has significant effect on the intensity and spectral content of the photoluminescence spectra

  • There is a model of the PL related to the presence of defect centers in oxides (SiOy) at the interface of silicon nanocrystallites (Si-NCs) por-Si/SiOy

Read more

Summary

Introduction

A large number of works dedicated to the study of photoluminescence (PL) properties of por-Si, promising for practical applications, such as LEDs.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.