Abstract

Photoluminescence (PL) spectra from ruby were obtained using a highly stable LED light source, employing pulse width modulation technique for excitation. The temporal variation in PL intensity caused by the increasing temperature of the LED used for excitation can be mitigated by adjusting the duty ratio (%) of the pulsed LED light to below 10% for cooling the LED. Stable PL spectra measurements were achieved with a duty ratio of less than 10% using a duty ratio-controlled pulsed LED light source, as temperature fluctuations in LED light intensity are minimized at duty ratios less than 10%. Furthermore, fluctuations in the measured PL intensity were diminished by setting the frequency of the pulsed LED light source to greater than 1kHz. This method enables more reliable, cost-effective, and stable PL measurements for material characterization in semiconductors, photonics, and nanotechnology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.