Abstract

Hydrogels, postmodulable in controlled time and space domains, attract particular attention due to their potential in bio-related applications. Towards this goal, photolatently reactive hydrogels are very promising. Here we develop photolatently modulable hydrogels, composed of a polymer network accommodating photocatalytic titania nanosheets at every crosslinking point. As titania nanosheets can utilize gelling water as their source of radicals, its long-lasting photocatalysis makes the hydrogels readily modulable. Benefiting from the hydrogelation mechanism, the gel network is finely compartmentalized, leading to sharp thermoresponses. As demonstrated by photo-micropatterning, non-diffusible titania nanosheets at the crosslinking points enable pointwise modulations with an excellent spatial resolution. The photolatent nature also makes it possible to conjugate them with other hydrogels and polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.