Abstract
The oxidation of volatile aqueous Hg0 in aquatic systems may be important in decreasing the fluxes of Hg out of the water column. Using incubations of natural samples from the St. Lawrence River, we examined some of the parameters that control this oxidation. Hg0 was found to be chiefly mediated by UV radiation since (i) "dark" oxidation was not found to be statistically significant; (ii) visible light induced a significant but slow photooxidation (k = 0.09 h(-1)); and (iii) visible + UV radiation led to a faster photooxidation (k = 0.6-0.7 h(-1)), mainly because of UV-A induced reactions. Doubling UV irradiation did not increase the reaction rate of Hg0 photooxidation in natural water samples, indicating that some factor other than photon flux was rate limiting and suggesting that the reaction involves intermediate photoproduced oxidant(s). The addition of methanol, a *OH scavenger, decreased Hg photooxidation rates by 25% in brackish waters and by 19% in artificial saline water containing semiquinones, indicating that *OH may be partly responsible for Hg0 oxidation. Photooxidation rates were not affected by oxygen concentrations and did not decrease when samples were heat-sterilized, treated with chloroform, or filtered prior to exposure to light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.