Abstract

The photo-induced micellization was attained for a poly(4-pyridinemethoxymethylstyrene)-block-polystyrene diblock copolymer using diphenyliodonium hexafluorophosphate, a photo-acid generator. Dynamic light scattering demonstrated that the copolymers with a 27.2-nm hydrodynamic diameter self-assembled into micelles with a 68.9-nm diameter by irradiation of a 1,4-dioxane solution of the copolymer using a high-pressure mercury lamp. The micellization was completed within 5 h based on the variation in the scattering intensity and the hydrodynamic diameter of the copolymer. It was found that the copolymer formed monodispersed spherical micelles because G1(τ), the normalized time correlation function of the scattered field, showed a linear decay. Furthermore, the proton nuclear magnetic resonance analysis confirmed that the micelles had cores formed by the poly(4-pyridinemethoxymethylstyrene) blocks. It was suggested that the micellization occurred by electron transfer from the pyridine to the photo-acid generator in their excited states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.