Abstract

Reconstitution of the photoelectric responses involved in photosensory transduction in "blind" cells of Chlamydomonas reinhardtii carotenoid-deficient mutants was studied by means of a recently developed population method. Both the photoreceptor current and the regenerative response can be restored by addition of all-trans-retinal, 9-demethyl-retinal, or dimethyl-octatrienal, while the retinal analogs prevented from 13-cis/trans isomerization, 13-demethyl-retinal and citral, are not effective. Fluence dependence, spectral sensitivity, and effect of hydroxylamine treatment on retinal-induced photoelectric responses are similar to those found earlier in green strains of Chlamydomonas, although an alternative mechanism of antenna directivity in white cells of reconstituted "blind" mutants (likely based on the focusing effect of the transparent cell bodies) leads to the reversed sign of phototaxis in mutant cells under the same conditions. The results obtained indicate that both photoreceptor current and regenerative response are initiated by the same or similar rhodopsins with arhaebacterial-like chromophore(s) and prove directly the earlier suggested identity of the photoreceptor pigment(s) involved in photomotile and photoelectric responses in flagellated algae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.