Abstract

Measuring the position of the end of 4000 optical fibers on the spherical focal plate for the LAMOST (Large Sky Area Multi-Object Fiber Spectroscopy Telescope) optical fibers positioning system is one of the key problems for LAMOST. The accuracy of optical fibers positioning system is guaranteed by feedback from measuring the position of the end of optical fiber. The position of the end of optical fiber is measured by photogrammetry with precision calibration. However, given the complexities in the optical fiber focal plane and the fiber positioner, the accurate standard point is considerably difficult to obtain, which results in insufficient calibration accuracy. To solve this problem, a convenient calibration method based on the Flexible Planar Target (FPT) is proposed. In this method, each fiber positioning unit positions the fiber to 16 designed locations, which are relatively accurate. These points form a high-precision 2D point array that can be used as the planar target. In this manner, each fiber positioning unit can be regarded as a small high-precision planar target. All small high-precision planar targets are assembled to form the Flexible Planar Target (FPT), which is used for calibration. Experimental results indicate that this improved method can reach a higher precision than that of previous method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.