Abstract

We describe molecular-beam photofragment translational spectroscopy (PTS) experiments using electron impact (EI) ionization product detection to investigate the 193 nm photodissociation of methyl azide (CH(3)N(3)) under collision-free conditions. These experiments are used to derive the branching ratio between channels 1 and 2 [(1) radical channel: CH(3)N(3) + hν (λ = 193 nm) → CH(3) + N(3); (2) molecular channel: CH(3)N(3) + hν (λ = 193 nm) → CH(3)N + N(2)], which have been reported in a previous VUV-photoionization based PTS study. (1) Using electron impact ionization cross sections and ion fragmentation ratios for the various detected products, we derive the branching ratio (X(CH(3)-N(3)))/(X(CH(3)N-N(2))) = (0.017 ± 0.004)/(0.983 ± 0.004). Based on analysis of the kinetic energy release in the radical channel, we find that the cyclic form of N(3) is the dominant product in the radical channel. Only a small fraction of the radical channel produces ground state linear N(3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.