Abstract
The different enantiomers of specific chiral molecules frequently exhibit disparate biological, physiological, or pharmacological properties. Therefore, the efficient synthesis of single enantiomers is of particular importance not only to the pharmaceutical sector but also to other industrial sectors, such as agrochemical and fine chemical industries. Deracemization, a process during which a racemic mixture is converted into a nonracemic product with 100% atom economy and theoretical yield, is the most straightforward method to access enantioenriched molecules but a challenging task due to a decrease in entropy and microscopic reversibility. Axially chiral allenes bear a distinctive structure of two orthogonal cumulative π-systems and are acknowledged as synthetically versatile synthons in organic synthesis. The selective creation of axially chiral allenes with high optical purity under mild reaction conditions has always been a very popular and hot topic in organic synthesis but remains challenging. Herein, a photoexcited palladium-catalyzed deracemization of nonprefunctionalized disubstituted allenes is disclosed. This method provides an efficient and economical strategy to accommodate a broad scope of allenes with good enantioselectivities and yields (53 examples, up to 96% yield and 95% ee). The use of a suitable chiral palladium complex with visible light irradiation is an essential factor in achieving this transformation. A metal-to-ligand charge transfer mechanism was proposed based on control experiments and density functional theory calculations. Quantum mechanical studies implicate dual modes of asymmetric induction behind our new protocol: (1) sterically controlled stereoselective binding of one allene enantiomer under the ground-state and (2) facile, noncovalent interaction-driven excited-state isomerization toward the opposite enantiomer. The success of this newly established photochemical deracemization strategy should provide inspiration for expansion to other multisubstituted allenes and will open up a new mode for enantioselective excited-state palladium catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.