Abstract

Cryptochromes are photolyase-like, blue-light (BL) photoreceptors found in various organisms. Arabidopsis (Arabidopsis thaliana) cryptochromes (CRYs; CRY1, and CRY2) mediate many light responses including photoperiodic floral initiation. Cryptochromes interact with COP1 and SPA1, causing the stabilization of CONSTANS (CO) and promotion of FLOWERING LOCUS T (FT) transcription and flowering. The AP2-like transcriptional factor TOE1 negatively regulates FT expression and flowering by indirectly inhibiting CO transcriptional activation activity and directly binding to FT Here, we demonstrate that CRY1 and CRY2 physically interact with TOE1 and TOE2 in a BL-dependent manner in flowering regulation. Genetic studies showed that mutation of TOE1 and TOE2 partially suppresses the late-flowering phenotype of cry1 cry2 mutant plants. BL-triggered interactions of CRY2 with TOE1 and TOE2 promote the dissociation of TOE1 and TOE2 from CO, resulting in alleviation of their inhibition of CO transcriptional activity and enhanced transcription of FT Furthermore, we show that CRY2 represses TOE1 binding to the regulatory element within the Block E enhancer of FT These results reveal that TOE1 and TOE2 act as downstream components of CRY2, thus partially mediating CRY2 regulation of photoperiodic flowering through modulation of CO activity and FT transcription.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.