Abstract

Titanium dioxide (TiO2) nanorods have been successfully synthesized by a simple and cost-effective hydrothermal deposition method onto the conducting glass substrates. Effect of reaction temperature on the growth of TiO2 nanorods have been investigated by varying the reaction temperature from 140 to 200 °C. The optical, structural, compositional, morphological properties of the synthesized films are studied. X-ray diffraction patterns reveal the formation of polycrystalline TiO2 with the tetragonal crystal structure possessing rutile phase. The chemical composition and valence states of the constituent elements were analysed by X-ray photoelectron spectroscopy. Field emission scanning electron microscopy images shows the formation of nanorod-like structure with variation in diameter. The optical band gap energy was found to increase from 3.07 to 3.15 eV with the increase in reaction temperature exhibiting a blue shift. The films were photo electrochemically active with the maximum current density of 216 µA/cm2 for the sample prepared at 180 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.