Abstract

The development of earth-abundant semiconductor photoelectrodes is of great importance to high-efficiency and sustainable photoelectrochemical water splitting. Herein, a one-dimensional TiO2 array photoanode was sheathed with an ultrathin overlayer of phosphated nickel-chromium double-metal hydroxide by a photoassisted modification and deposition strategy. The core/shell array photoanode resulted in a large cathodic shift of photocurrent onset potential (≈200 mV). Nearly 100 % oxidative efficiency for PEC water oxidation was achieved over a wide range of potential. Mechanism studies show that the modification of phosphate leads to significantly improved charge separation. The amorphous hydroxide sheath could efficiently inhibit oxygen reduction reactions. Therefore, this strategy enables the simultaneous suppression of surface carrier recombination and back reactions, which is promising to improve the water oxidation efficiency of currently prevailing photoanodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.