Abstract

Nanostructured α‐Fe2O3 thin film electrodes were deposited by aerosol‐assisted chemical vapour deposition (AACVD) for photoelectrochemical (PEC) water splitting on conducting glass substrates using 0.1 M methanolic solution of Fe(acac)3. The XRD analysis confirmed that the films are highly crystalline α‐Fe2O3 and free from other iron oxide phases. The highly reproducible electrodes have an optical bandgap of ∼2.15 eV and exhibit anodic photocurrent. The current–voltage characterization of the electrodes reveals that the photocurrent density strongly depended on the film morphology and deposition temperature. Scanning electron microscopy (SEM) analysis showed a change in the surface morphology with the change in deposition temperature. The films deposited at 450 °C have nanoporous structures which provide a maximum electrode/electrolyte interface. The maximum photocurrent density of 455 µA/cm2 was achieved at 0.25 V vs. Ag/AgCl/3M KCl (∼1.23 V vs. RHE) and the incident photon to electron conversion efficiency (IPCE) was 23.6% at 350 nm for the electrode deposited at 450 °C. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.