Abstract
Metamorphic InAs/InGaAs quantum dots (QDs) have been proposed as active elements for optoelectronic light-emitting devices operating in the infrared range. However, advanced structure design to allow efficient and stable enhancement of quantum yield at room temperature are still needed. Here, we compare a metamorphic InAs/In0.15Ga0.85As QD heterostructure with and without GaAs confining barriers, to investigate the effect of introducing GaAs barriers on the photo- and thermo-electrical properties. GaAs confining barriers allow to enhance the QD photoluminescence intensity at 1.3 µm, i.e. second telecommunication window, by more than two orders of magnitude at room temperature and at 80 K. We also discuss the effect of GaAs barriers on the carrier transport and on defect-related levels detected by means of photocurrent and deep level thermally stimulated current spectroscopies. GaAs confining barriers decrease the thermal escape rate of electrons confined in QD and wetting layer, thereby highly increasing the radiative recombination and also quenching the photocurrent. At low temperatures, the barriers also reduce the capture of electrons generated in InGaAs by the QD layer and, on the other hand, prevent the trapping of electrons outside the QD layer, decreasing carrier lifetimes. The deep levels identified as point and extended defects have been detected in the InGaAs layers. There are no new types of defects introduced in the structure by the addition of the barriers, but this causes a weakly increased density of traps near QDs. Our results show that InAs/InGaAs QDs with GaAs confining barriers can be efficient light emitters with only a slight increase of defects in the structure. Hence, such advanced design for metamorphic QDs can be of relevant interest for applications in energy-efficient QD lasers, optical amplifiers and single-photon emitters operating at 1.3–1.55 µm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.