Abstract
Singlet oxygen mediated oxidation has been shown to be responsible for photodynamic inactivation (PDI) of viruses in solution with photosensitisers such as 5, 10, 15, 20-tetrakis (1-methyl-4-pyridinio) porphyrin tetra p-toluenesulfonate (TMPyP). The capsids of non-enveloped viruses, such as bacteriophage MS2, are possible targets for viral inactivation by singlet oxygen oxidation. Within the capsid (predominantly composed of coat protein), the A-protein acts as the host recognition and attachment protein. The A-protein has two domains; an α-helix domain and a β-sheet domain. The α-helix domain is attached to the viral RNA genome inside the capsid while the β-sheet domain, which is on the surface of the capsid, is believed to be the site for attachment to the host bacteria pilus during infection. In this study, 4 sequence-specific antibodies were raised against 4 sites on the A-protein. Changes induced by the oxidation of singlet oxygen were compared to the rate of PDI of the virus. Using these antibodies, our results suggest that the rate of PDI is relative to loss of antigenicity of two sites on the A-protein. Our data further showed that PDI caused aggregation of MS2 particles and crosslinking of MS2 coat protein. However, these inter- and intra-capsid changes did not correlate to the rate of PDI we observed in MS2. Possible modes of action are discussed as a means to gaining insight to the targets and mechanisms of PDI of viruses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.