Abstract

Sulfadiazine, a potent antibacterial agent belonging to the group of antibiotics called sulfonamides, has been reported to be present in surface and groundwater. This study investigated the degradation of sulfadiazine in a goethite (α-FeOOH)−oxalate Fenton-like system under UV irradiation. The results showed that sulfadiazine could be effectively photodegraded by the goethite−oxalate Fenton-like system as a result of the formation of the highly oxidizing hydroxyl radicals, •OH. Among the iron oxides tested (α-FeOOH, γ-Fe2O3, γ-FeOOH, and α-Fe2O3), α-FeOOH was found to be the most effective. Degradation of sulfadiazine depended significantly on the pH and initial concentration of oxalic acid in the system, with optimal values of 3.5 and 4.0 mM, respectively, under UV irradiation. Five intermediate products of sulfadiazine degradation were identified using high-performance liquid chromatography−mass spectrometry (HPLC−MS), gas chromatography−mass spectrometry (GC−MS), and ion chromatography (IC), and a poss...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.