Abstract

A group of azobenzene derivatives containing two quaternary ammonium groups with various intercharge distances between them was synthesised and used to control photochemically the conformation of genomic DNA by switching the distance between cationic ammonium groups in the dications. It was found that isomerisation of either dication from the trans form to cis resulted in an increase in the dication's efficiency for DNA compaction; this is associated with a decrease in intercharge distance between ammonium groups and leads to a better match of the binder's cationic groups to adjacent phosphate groups of DNA. Ammonium dications have several important advantages over the photosensitive surfactant type of diazobenzene reported earlier: they can be used at significantly lower (>100-fold) concentrations than photosensitive surfactants, and DNA conformation control can be performed over a broader concentration range of dications. The influence of intercharge distance in photosensitive dications on photo-induced DNA binding discrimination is discussed, and the molecular mechanism is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.