Abstract
Novel silver-decorated Fe2O3 nanotubes (Ag/FeNT) have been synthesized by a simple, fast and efficient method. Fe2O3 nanotubes (FeNT) have been successfully synthesized on pure iron plates by electrochemical anodizing, followed by silver deposition on the surface of the nanotubes through photodeposition. Various instrumental techniques have been used to investigate the morphology, structure and optical properties of the prepared samples. In addition, the photoelectrochemical water splitting performance of the new electrodes has been studied. An increased photocurrent density and a greatly enhanced onset potential for photoelectrochemical activity have been shown by Ag/FeNT electrodes in comparison with bare FeNT. Silver-decorated Fe2O3 nanotube (sample Ag/FeNT1) shows an almost 2.5-fold increase in photocurrent compared with bare Fe2O3 nanotube. Efficient charge carrier separation, visible light sensitization due to Ag nanoparticles on Fe2O3 nanotube and enhanced electrical conductivity are responsible for the increase in the photoelectrochemical water splitting activity of Ag/FeNT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.