Abstract

Heterogeneous photochemical reactions associated with natural iron (hydr)oxides and oxalic acid have attracted a great deal of scientific attention in the application of organic pollutants degradation. However, the reaction mechanism is still unclear due to the complicated iron cycles and reactive oxygen species (ROS) generation. In this study, the in situ attenuated total reflectance-Fourier transform infrared spectroscopy was implemented to investigate the adsorption process and photochemical behavior of oxalic acid on the surface of ferrihydrite. A comprehensive reaction mechanism from the perspective of charge transfer process, including homogeneous-heterogeneous iron cycling and ROS generation, was illustrated in detail. We found that oxalic acid was first adsorbed on the surface of ferrihydrite with a mononuclear bidentate binding geometry. Interestingly, this mononuclear bidentate complex on the surface of ferrihydrite was stable under visible light irradiation. Subsequently, the whole complex departed from ferrihydrite surface through non-reduction dissolution with the form of Fe(C2O4)+. In the solution, the Fe(C2O4)+ complexes would quickly convert to Fe(C2O4)2− complexes. Under visible light irradiation, the electrons generated from the photolysis of Fe(C2O4)2− complex reacted with O2 to form O2•−/•OOH. Meanwhile, Fe(III) was reduced to Fe(II). Finally, the produced O2•−/•OOH could react with Fe(II) through a one-step way to generate •OH, which possessed higher •OH formation efficiency than that through the two-step way of H2O2 as the intermediates. This study helps us with understanding of in-situ photochemical reaction mechanism of ferrihydrite-oxalic acid system, and also provides guidance to effectively utilize widespread iron (hydr)oxides and organic acids in natural environment to develop engineered systems for water treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.