Abstract

Abstract This study investigates the photocatalytic reduction of nitrate in seawater using carbon-modified titanium oxide (C/TiO2) nanoparticles under different reaction conditions. Formic acid was used as a sacrificial electron donor for inhibiting the mechanism of electron/hole recombination on the photocatalyst. Unmodified titanium oxide (TiO2) and reference TiO2 P25 photocatalysts were used for comparison. The elemental composition determined through energy dispersive spectroscopy (EDS) analysis evidenced the carbon modification for C/TiO2 nanoparticles. The optical bandgap energy for C/TiO2 has been remarkably reduced to 1.78 eV which in turn enhanced its performance towards the photocatalytic removal of nitrate under ultraviolet as well as natural sunlight irradiation. Factors including C/TiO2 loading, initial nitrate concentration, solution pH and hole scavenger concentration were studied to attain the optimal reaction conditions. The highest nitrate photocatalytic removal rate was obtained at catalyst loading of 0.5 g L−1, pH 3 and 0.04 M of formic acid. The kinetic study showed that the photocatalytic nitrate removal from seawater using carbon-modified titanium oxide was successfully expressed by the pseudo first-order reaction kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.