Abstract
Plasmonic nanomaterials have wide applications in many fields, such as photocatalysis, solar cell, and new energy generation system. Among them, AgCl–Ag nanomaterials with excellent plasmonic property are getting more and more attention. In this work, AgCl@Ag core–shell nanocubes (AgCl@Ag CS-NCs) with highly uniform morphology and controlled composition have been successfully prepared by the partial reduction of AgCl nanocubes. The morphology, composition, and structure of AgCl@Ag CS-NCs have been investigated systematically. AgCl@Ag CS-NCs with the ratio of AgCl/Ag = 2.7:1 show the optimizational photocatalytic activity for the reduction of representative carcinogenic contaminant (CrVI), which is much higher than that of commercial P25 photocatalyst. The localized surface plasmon resonance and Schottky junction of AgCl@Ag CS-NCs contribute to the high photocatalytic activity for the CrVI photoreduction. After 5 times recyclable catalysis, the high photocatalytic activity of AgCl@Ag CS-NCs can still be maintained well, which demonstrates that AgCl@Ag CS-NCs possess excellent reusability and stability. The high activity and durability make AgCl@Ag CS-NCs to become a promising candidate for the environmental pollution purification under the sunlight irradiation condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.