Abstract

The medium used for Chlorella vulgaris cultivation exerted obvious inhibitory effects on the growth of C. vulgaris after several culture-harvest cycles. The accumulated fatty acids secreted by C. vulgaris during their growth process were expected to be the cell inhibition components. In this work, the ultraviolet-driven photocatalytic oxidation technique was applied for the degradation of microalgae cell growth inhibition components in the aged cultivation medium, and the reaction parameters were optimized. The results indicated that the photocatalytic oxidation processes using 0.5g/L [Formula: see text] NPs as the catalyst under the aeration condition showed as high as 74.61 ± 4.60% FA degradation efficiency after 20min illumination, and the contents of -COOH, [Formula: see text] (α) and -COO-R functional groups in the aged C. vulgaris medium were significantly reduced. In addition, the modification of the photocatalyst further improved the ability of the degradation of FA. When the modified [Formula: see text]/AC and [Formula: see text]/Ag catalysts were applied, the FA degradation rates reached as high as 92.46 ± 0.37% and 93.91 ± 1.37%, respectively. In the recycled medium treated with [Formula: see text]/AC, the cell density in the stable phase reached 96.33 ± 1.83% of that in the fresh medium as the control. In summary, the photocatalytic oxidation with the modified [Formula: see text]/AC catalyst was proposed as the efficient strategy to realize the recycling of the aged C. vulgaris cultivation medium via the degradation of the FA as the cell growth inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.