Abstract
In the present work, Nickel oxide nanoparticles (NiO NPs) were synthesized using leaves extract of C. gigantea through a solution combustion method. The NiO NPs were characterized through analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The XRD results revealed rhombohedral structured crystallites with average size of 31 nm. SEM and TEM images indicate that the nanoparticles are agglomerated with an asymmetrical shape. The optical energy bandgap of 3.45 eV was estimated using UV-diffused reflectance spectroscopy (UV-DRS). The synthesized NiO NPs have shown superior photodegradation for methylene blue (MB) dye. Further, the antibacterial activity of the prepared nanoparticles was tested against E.coli and S.aureus bacterial strains. In addition, nanoparticles were utilized for electroanalytical applicability as a novel non-enzymatic sensor in the trace level quantification of nitrite. The proposed nitrite sensor showed wide linearity in the range 8–1700 μM and good stability with a lower detection limit of 1.2 μM. • Nickel oxide nanoparticles (NiO NPs) were synthesized using Calotropis gigantea through solution combustion method. • The prepared NPs were characterized using FT-IR, XRD, SEM, EDAX, HR-TEM and voltammetric techniques. • The NiO NPs showed good performance in degradation of MB dye and better antibacterial activity against E . coli and S . aureus bacterial strains. • The NiO NPs modified electrode showed the excellent electro catalytic behavior in the electrochemical sensing of nitrite with detection limit of 1.2 μM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Science: Advanced Materials and Devices
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.