Abstract

The utilization of solar energy to produce hydrogen from water is showing increased importance and desirability in the field of artificial photosynthesis to produce clean and sustainable fuels. In a typical three-component dye-sensitized semiconductor system for photocatalysis, the dye sensitizer plays an essential role of energy antenna for harvesting visible light and promoting the reduction reaction to generate hydrogen. In recent decades, a lot of attention has focused on metal-free organic sensitizers, which have the advantages of low cost, high molar extinction coefficient, good modifiability and, most importantly, ability to avoid the use of noble metal ions. This Review enumerates the design strategies, specific properties and photocatalytic performances of metal-free sensitizers in the past 30 years and concludes their evolution process. The advantages of different types of metal-free sensitizers are highlighted and the instructively enlightening experiences are systematic summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.