Abstract

The Fe-TiO2 photocatalysts synthesized by a sol–gel method have the mesoporous structure with a narrow pore size distribution, large pore volume and high surface area. The incorporated Fe3+ substitutes the octahedrally coordinated Ti4+ in the TiO2 lattice to extend the absorption of TiO2 to visible light region and promote the formation of electron–hole pair. Additionally, the separation and transportation efficiency increase with the doping of Fe3+ increasing from 0.1% to 0.7%, while decreases remarkably with the doping concentration increasing from 0.7% to 1.5%. The Fe-TiO2 shows excellent photocatalytic performance for toluene degradation under visible light irradiation. The optimal Fe/Ti ratio is 0.7%. Partial deactivation of the photocatalytic activity was observed after 20 consecutive reaction runs. From the in situ DRIFTS experiment, the deactivation reason can be attributed to the formation of stable intermediates, such as benzaldehyde and benzoic acid, which occupied the active sites on the surface of the photocatalyst. The adsorbed benzaldehyde and benzoic acid can be removed with heat treatment at 653K for 3h and the deactivated photocatalyst can be regenerated completely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.