Abstract

Reduced graphene oxide-SnSe (rGO-SnSe) nanohybrids were synthesized with a solution chemical reaction at room temperature. The nanohybrids were characterized by various techniques for their microstructural and photocatalytic activities in photodegradation of alkaline dye malachite green in the water. The effects of rGO/SnSe ratio, initial solution pH, and H2O2 concentration on the photodegradation efficiency were studied. The SnSe nanocrystallines with nanoscale size and narrow bandgap were formed and uniformly adhered on the rGO surface. Raman analysis confirmed the reduction of GO. The experimental results indicated that the nanohybrids showed excellent sunlight-excited photocatalytic activity in degrading malachite green in the water. Significantly, the nanohybrids showed remarkable photo-Fenton-like catalytic activity. The photodegradation rates of the hybrids were greater than that of SnSe nanoparticles, increased with increasing rGO/SnSe ratio, and related to operation parameters. High photocatalytic activities were ascribed to the efficiency interface effect that was confirmed by the calculations of band energy level and photoconductivity. The TOC measurement further verified the photodegradation results. The nanoparticles and nanohybrids also showed excellent reusability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.