Abstract
An easy method for preparing CuO nanoparticles incorporated in a mesoporous structure was presented based on the thermal decomposition of a copper complex. The novel copper coordination compound of [Cu(anic)2]·0.75H2O (anic= 2-aminonicotinate) with the microflake morphology was synthesized through the reaction of 2-aminonicotinic acid (Hanic) and copper(II) nitrate. Using elemental analysis and Fourier transform infrared (FTIR) spectroscopy, the chemical composition of CuC12H11.5N4O4.75 was proposed. Calcination process at 550 °C for 4 h transformed the microflakes into CuO nanoparticles incorporated in a mesoporous structure. The FTIR peaks assigned to 2-aminonicotinate were completely removed after calcination, confirming CuO formation. X-ray diffraction (XRD) analysis also confirmed the generation of pure and crystalline CuO. SEM showed CuO nanoparticles with the average diameter of 75 nm. The diffuse reflectance spectrum (DRS) of the CuO nanoparticles showed a band gap energy of −1.58 eV. The degradation efficiency toward rhodamine B was almost 100 % after 5 h illumination when both CuO and H2O2 were utilized. The results show that the product can be used as an efficient photocatalyst for water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.