Abstract

A rutile TiO2(100) surface usually shows better photoactivity than other surfaces, and its mechanism is not well understood yet. In this work, we found larger charge accumulation on its bridging oxygen/adsorbents and lower symmetry of its surface Ti atoms. This enables (100) a better surface to accommodate the hole, which could be one key reason for its high photoactivity. Interestingly, the localized hole on the (100) surface can be reliably simulated using a density functional theory (DFT) method without Hubbard U corrections, which affords an unbiased platform to study the hole-scavenging behavior for extensive adsorbents and functional groups. Then, the hole-mediated proton dissociations of water, alcohol, amine, and alkane on the (100) surface have been studied in detail. The hole-scavenging ability of the groups is in the order hydroxyl < alkoxyl < aminyl < alkyl. Moreover, we found a good correlation between the hole-scavenging ability and the density of states. With this correlation, we predict that the facet hole-scavenging ability for most groups is in the order rutile (100) > anatase (101) > rutile (110) > rutile (001), which is in good agreement with the experimental observations and would provide suggestions for further photocatalytic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.