Abstract
We report a nanoparticulate composite TiO2–BaTiO3 film which exhibits an increased antibacterial photocatalytic activity under visible light. The pure BaTiO3, TiO2 or their mixture do not attain a significant photocatalytic capacity under visible light. However, when these oxides are simultaneously synthesized under controlled conditions the resulting crystals exhibit a high catalytic effect. The effect of this material on microorganism lysis is studied and the mechanisms for the observed damage are investigated. Attenuated total reflection Fourier transform infrared spectroscopy provides the evidence of chemical changes (formation of carbonyl and carboxylic groups) in the cell membranes under visible light by TiO2–BaTiO3 but not by TiO2. Cyclic voltammetry demonstrates that peroxidation occurs in the absence of UV light and in the presence of TiO2–BaTiO3 but not in the presence of TiO2 alone. Atomic force microscopy reveals the morphological changes of the cells in this process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.