Abstract
Dissolved hexachlororuthenate(IV) effectively catalyzes the photodecomposition of chloroform to hydrogen chloride and phosgene under near-UV (λ>345nm) irradiation, whereby RuCl6(2-) is not itself photocatalytically active, but is photochemically transformed into a species that is active, possibly RuCl5 (CHCl3 )(-) . Conversion to a photoactive species during irradiation is consistent with the acceleration of the decomposition rate during the early stages and with the apparent inverse dependence of the decomposition rate on the initial concentration of RuCl6(2-) . The displacement of Cl(-) by CHCl3 in the coordination sphere to create the photoactive species is consistent with the retardation of photodecomposition by both Cl(-) and H2 O. The much smaller photodecomposition rate in CDCl3 suggests that C-H bond dissociation occurs during the primary photochemical event, which is also consistent with the presence of a CHCl3 molecule in the first coordination sphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.