Abstract

ObjectivePhotobiomodulation therapy (PBMT) has proven to reduce inflammation and pain and increase wound healing. Thus, the aim of this study was to analyze the effects of PBMT parameters on migration, proliferation, and gene expression after ionizing radiation and bacterial-induced stress in an in vitro study. DesignKeratinocytes (HaCaT) and Fibroblasts (HGFs) were grown in DMEM with 10 % fetal bovine serum until stressful condition induction with lipopolysaccharide (LPS) of Escherichia coli (1 µg/mL), Porphyromonas gingivalis protein extract (5 µg/mL) and ionizing radiation (8 Gy). Low-laser irradiation (660 nm, 30 mW) was carried out in four sessions, with 6 h intervals, and energy density of 2, 3, 4, and 5 J/cm². Scratch assays, immunofluorescence, and RT-qPCR were performed. ResultsTreated fibroblasts and keratinocytes showed significant response in proliferation and migration after scratch assays (p < 0.05). Higher expressions of α-SMA in fibroblasts and F-actin in keratinocytes were observed in cells subjected to 3 J/cm². PI3K-pathway genes expression tended to enhance in fibroblasts, presenting a higher relative expression when compared to keratinocytes. In keratinocytes, PBMT groups demonstrated deregulated expression for all inflammatory cytokines’ genes tested while fibroblasts presented a tendency to enhance those genes expression in a dose dependent way. ConclusionsThe present study showed that delivering 660 nm, 30 mW was effective to stimulate cell migration, proliferation and to accelerate wound healing. PBMT can modulate cytokines and pathways involved in wound repair. The different energy densities delivering distinct responses in vitro highlights that understanding laser parameters is fundamental to improve treatment strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.