Abstract

Microcrystalline powders of rutile and anatase were milled in a high-energy planetary mill down to obtain nanosized TiO2 powders (the size of coherent scattering region (CSR) about 30 nm and 60 nm, respectively). The resulting powders were characterized by HRTEM, Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and the ξ-potential of the aqueous suspensions was determined. High-energy milling made it possible to significantly increase the ability of TiO2 to remove chromium from aqueous solutions. The effectiveness of the powders for not only Cr(VI) removing but also total chromium adsorption under UV-irradiation and short wavelength visible light has been shown. This is important, since Cr(III) does not remain in the aqueous medium and cannot be oxidized back to Cr(VI) under the influence of some environmental factors. It is possible to remove more than 99.9% of total chromium and 100 % of chromium hexavalent from a 50 mg·L-1 solution of Cr(VI) using milled anatase. XPS showed that, upon the photoadsorption, Cr(VI) is reduced to Cr(III). The presence of an acetate buffer in the solution promotes the most efficient removal of chromium. This work shows a simple way to obtain a highly effective material with potential applications for the removal of high toxic hexavalent chromium from industrial wastewater. The milled anatase sample was successfully tested to remove Cr (VI) from a real wastewater sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.