Abstract

The mechanism of radical transport in the alpha2 (R1) subunit of class I E. coli ribonucleotide reductase (RNR) has been investigated by the phototriggered generation of a tyrosyl radical, *Y356, on a 20-mer peptide bound to alpha2. This peptide, Y-R2C19, is identical to the C-terminal peptide tail of the beta2 (R2) subunit and is a known competitive inhibitor of binding of the native beta2 protein to alpha2. *Y356 radical initiation is prompted by excitation (lambda >or= 300 nm) of a proximal anthraquinone, Anq, or benzophenone, BPA, chromophore on the peptide. Transient absorption spectroscopy has been employed to kinetically characterize the radical-producing step by time resolving the semiquinone anion (Anq*-), ketyl radical (*-BPA), and Y* photoproducts on (i) BPA-Y and Anq-Y dipeptides and (ii) BPA/Anq-Y-R2C19 peptides. Light-initiated, single-turnover assays have been carried out with the peptide/alpha2 complex in the presence of [14C]-labeled cytidine 5'-diphosphate substrate and ATP allosteric effector. We show that both the Anq- and BPA-containing peptides are competent in deoxycytidine diphosphate formation and turnover occurs via Y731 to Y730 to C439 pathway-dependent radical transport in alpha2. Experiments with the Y730F mutant exclude a direct superexchange mechanism between C439 and Y731 and are consistent with a PCET model for radical transport in which there is a unidirectional transport of the electron and proton transport among residues of alpha2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.