Abstract
Stimuli-responsive hybrid materials that combine the dynamic nature self-assembled organic nanostructures, unique photophysical properties of inorganic materials, and molecular recognition capability of biopolymers can provide sophisticated nanoarchitectures with unprecedented functions. In this report, infrared (IR)-responsive self-assembled peptide-carbon nanotube (CNT) hybrids that enable the spatiotemporal control of bioactive ligand multivalency and subsequent human neural stem cell (hNSC) differentiation are reported. The switching between the ligand presented and hidden states was controlled via IR-induced photothermal heating of CNTs, followed by the shrinkage of the thermoresponsive dendrimers that exhibited lower critical solution temperature (LCST) behavior. The control of the ligand spacing via molecular coassembly and IR-triggered ligand presentation promoted the sequential events of integrin receptor clustering and the differentiation of hNSCs into electrophysiologically functional neurons. Therefore, the combination of our nanohybrid with biomaterial scaffolds may be able to further improve effectiveness, durability, and functionality of the nanohybrid systems for spatiotemporal control of stem cell differentiation. Moreover, these responsive hybrids with remote-controllable functions can be developed as therapeutics for the treatment of neuronal disorders and as materials for the smart control of cell function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.