Abstract

The zero-dimensional carbon nanostructure known as carbon dots showed attractive attributes such as multicolour emission, very high quantum yield, up-conversion, very good aqueous solubility, eco-friendliness, and excellent biocompatibility. These outstanding features of the carbon dots have raised significant interest among the research community worldwide. In the current work, water-soluble nitrogen, silver, and gold co-doped bimetallic carbon dots (BCDs) were prepared using the one-pot hydrothermal method with citric acid as a sole carbon source. As prepared BCDs showed size in the range of 4-8nm and excitation-independent emission behaviour with maximum emission observed at 427nm. Additionally, these BCDs showed a very high quantum yield value of 50% and fluorescence lifetime value of 10.1ns respectively. Interestingly, as prepared BCDs selectively sense picric acid (PA) by exhibiting "selective fluorescence turn-off" behaviour in the presence of PA with a limit of detection value (LOD) of 46nM. Further, as prepared BCDs were explored for photodynamic therapy to inactivate bacterial growth in the presence of light (400-700nm) by generating singlet oxygen. Thus as prepared BCDs offer lots of potentials to use a nanoprobe to detect picric acid in an aqueous medium and to design next-generation antibacterial materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.