Abstract

Solid ionogel electrolytes are rather competitive compared to liquid carbonate based electrolyte regarding ionic conductivity but they show much better safety. It is striking that the ionogels presented here are obtained within few minutes by UV curing which triggers the formation of the polymer host network confining N-methyl,N-propylpyrrolidinium bis-(trifluoromethyl)sulfonylimide with lithium bis-(trifluoromethyl)sulfonylimide salt at the concentration of 1M. This fast and easy process allows for obtaining all-solid like micro-batteries. Herein the effect of mesh size and ethylene oxide content of various host networks is deciphered. An optimum balance between mesh size, ethylene oxide and lithium content is identified. The ionogel formed from trimethylolpropane ethoxylate triacrylate and 1,6-hexanediol diacrylate confining 90% wt of ionic liquid shows a mesh size close to 5 nm, with an enhanced fragility of the confined ionic liquid, as referred to that of the bulk one. Along with these last features, its ethylene oxide content allows a very good lithium ion diffusion. At room temperature and at C/5 cycling rate, prototype batteries LiFePO4 | ionogel | Li metal battery can restitute 70% of the initial capacity during up to 1200 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.