Abstract

The photo-Hall-effect was applied to the study of electron dynamics in semi-insulating Fe-doped GaN. High-powered light-emitting diodes of wavelengths λ = 940, 536, 449, 402, and 365 nm were used to excite steady-state free-electron volume concentrations Δn = 105–108 cm−3, depending on λ and intensity I0. Electron lifetime τ was determined from the energy E dependence of the excited sheet electron concentration Δns through the relationship Δns = I0τA(E), where the absorbance A(E) is a known function of sample thickness d and absorption coefficient α, and the energy dependence of α is taken from a theory of deep-center photoionization. The major sample impurities were Fe, Si, and C, with [Fe] ≫ [Si] and [C]. Fitted lifetimes τ ranged from 15 to 170 ps, depending on [Fe]. It was found that Δns ∝ I0 for [Si] > [C] and ∝ I01/2 for [Si] < [C]; the latter dependence arises possibly from self-compensation of neutral C impurities by N-vacancy donors. For [Si] > [C], some of the neutral Fe3+ is converted to Fe2+ with ground state Fe2+(5E) and excited state Fe2+(5T2); a fit of n vs. temperature T over the range of 290–325 K in the dark establishes E5E with respect to the conduction band: ECB – E5E = 0.564 eV − β5ET, where β5E = 3.6 × 10−4 eV/K. At room temperature, 294 K, ECB – E5E = 0.46 eV and ECB – E5T2 = 0.07 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.