Abstract

Fabrication of transition metal dichalcogenide quantum dots (QDs) is complex and requires submerging powders in binary solvents and constant tuning of wavelength and pulsed frequency of light to achieve a desired reaction. Instead of liquid state photoexfoliation, we utilize infrared laser irradiation of free-standing MoS2 flakes in transmission electron microscope (TEM) to achieve solid-state multi-level photoexfoliation of QDs. By investigating the steps involved in photochemical reaction between the surface of MoS2 and the laser beam, we gain insight into each step of the photoexfoliation mechanism and observe high yield production of QDs, led by an inhomogeneous crystalline size distribution. Additionally, by using a laser with a lower energy than the indirect optical transition of bulk MoS2, we conclude that the underlying phenomena behind the photoexfoliation is from multi-photon absorption achieved at high optical outputs from the laser source. These findings provide an environmentally friendly synthesis method to fabricate QDs for potential applications in biomedicine, optoelectronics, and fluorescence sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.