Abstract

Ripening of fleshy fruits involves both diverse post-translational modifications (PTMs) and dynamic transcriptional reprogramming, but the interconnection between PTMs, such as protein phosphorylation and transcriptional regulation, in fruit ripening remains to be deciphered. Here, we conducted a phosphoproteomic analysis during banana (Musa acuminata) ripening and identified 63 unique phosphopeptides corresponding to 49 proteins. Among them, a Musa acuminata basic leucine zipper transcription factor21 (MabZIP21) displayed elevated phosphorylation level in the ripening stage. MabZIP21 transcript and phosphorylation abundance increased during banana ripening. Genome-wide MabZIP21 DNA binding assays revealed MabZIP21-regulated functional genes contributing to banana ripening, and electrophoretic mobility shift assay, chromatin immunoprecipitation coupled with quantitative polymerase chain reaction, and dual-luciferase reporter analyses demonstrated that MabZIP21 stimulates the transcription of a subset of ripening-related genes via directly binding to their promoters. Moreover, MabZIP21 can be phosphorylated by MaMPK6-3, which plays a role in banana ripening, and T318 and S436 are important phosphorylation sites. Protein phosphorylation enhanced MabZIP21-mediated transcriptional activation ability, and transient overexpression of the phosphomimetic form of MabZIP21 accelerated banana fruit ripening. Additionally, MabZIP21 enlarges its role in transcriptional regulation by activating the transcription of both MaMPK6-3 and itself. Taken together, this study reveals an important machinery of protein phosphorylation in banana fruit ripening in which MabZIP21 is a component of the complex phosphorylation pathway linking the upstream signal mediated by MaMPK6-3 with transcriptional controlling of a subset of ripening-associated genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.