Abstract

Myorod, also known as catchin, a newly discovered component of molluscan smooth muscle thick filaments, is an alternative product of the myosin heavy chain gene. It contains a C-terminal rod part that is identical to that part of myosin and a unique N-terminal domain that is very small relative to the myosin head domain. The role of myorod in contraction or relaxation of this muscle type is unknown. In the present study we demonstrated that myorod was phosphorylated not only by a kinase endogenous to molluscan myosin and twitchin but also to vertebrate smooth muscle myosin light chain kinase (MLCK). The rates and maximal levels of phosphorylation were up to threefold higher than those observed by protein kinase A with clear optima at the physiological salt concentrations. Using a mild digestion with chymotrypsin we isolated an 11 kDa phosphopeptide and showed that the phosphorylation site was located at the N-terminal domain of myorod at Thr 141 position. The sequence around this site exhibited a high degree of similarity to that expected for the substrate recognition site of MLCK. The phosphorylation rates strongly depended on the ionic conditions indicating that this site could be readily sterically blocked during myorod polymerization. Another component of the thick filaments involved in regulation of the catch state, twitchin, was phosphorylated by MLCK and exhibited endogenous myorod kinase and MLCK activities. A possible role of these phosphorylation reactions in the regulation of molluscan smooth muscles is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.