Abstract

ObjectiveGluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) inserted into postsynaptic membranes are key to the process of long-term potentiation (LTP). Some evidence has shown that 4.1N plays a critical role in the membrane trafficking of AMPARs. However, the underlying mechanism behind this is still unclear. We investigated the role of 4.1N-mediated membrane trafficking of AMPARs during theta-burst stimulation long-term potentiation (TBS-LTP), to illustrate the molecular mechanism behind LTP. MethodsLTP was induced by TBS in rat hippocampal CA1 neuron. Tat-GluA1 (MPR), which disrupts the association of 4.1N-GluA1, and autocamtide-2-inhibitory peptide, myristoylated (Myr-AIP), a CaMKII antagonist, were used to explore the role of 4.1N in the AMPARs trafficking during TBS-induced LTP. Immunoprecipitation (IP) and immunoblotting (IB)were used to detect protein expression, phosphorylation, and the interaction of p-CaMKII-4.1N-GluA1. ResultsWe found that Myr-AIP attenuated increases of p-CaMKII (T286), p-GluA1 (ser831), and 4.1N phosphorylation after TBS-LTP, and decreased the association of p-CaMKII-4.1N-GluA1, along with the expression of GluA1, at postsynaptic densities during TBS-LTP. We also designed interfering peptides to disrupt the interaction between 4.1N and GluA1, which showed that Tat-GluA1 (MPR) or Myr-AIP inhibited TBS-LTP and attenuated increases of GluA1 at postsynaptic sites, while Tat-GluA1 (MPR) or Myr-AIP had no effects on miniature excitatory postsynaptic currents (mEPSCs) in non-stimulated hippocampal CA1 neurons. ConclusionActive CaMKII enhanced the phosphorylation of 4.1N and facilitated the association of p-CaMKII with 4.1N-GluA1, which in turn resulted in GluA1 trafficking during TBS-LTP. The association of 4.1N-GluA1 is required for LTP, but not for basal synaptic transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.