Abstract

The effects of cAMP-dependent protein kinase (cAMP-PK) phosphorylation on the degradation of the microtubule-associated protein tau by calpain were studied. Purified bovine brain tau that had been phosphorylated by cAMP-PK had a slower migration pattern on sodium dodecyl sulfate-polyacrylamide gels and a more acidic, less heterogeneous pattern on two-dimensional, nonequilibrium pH gradient electrophoresis (NEPHGE) gels compared with untreated tau. Phosphorylation of tau by cAMP-PK significantly inhibited its proteolysis by calpain compared with untreated tau. To our knowledge this is the first demonstration that phosphorylation of tau by a specific kinase results in increased resistance to hydrolysis by calpain. Tau dephosphorylated by alkaline phosphatase migrated more rapidly on sodium dodecyl sulfate-polyacrylamide gels and also showed an altered two-dimensional NEPHGE pattern. Dephosphorylation of tau had no effect on its susceptibility to calpain proteolysis, indicating that regulation of the susceptibility to calpain hydrolysis is due to the phosphorylation of a specific site(s). These results suggest a role for phosphorylation in regulating the degradation of tau. Abnormal phosphorylation could result in a protease-resistant tau population which may contribute to the formation of paired helical filaments in Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.