Abstract
Dopa phosphates, a new class of compounds, contain phosphate-ester linkages at the 3- and/or 4- positions of the phenylalanine ring of L-dopa. Dopa phosphates have been shown to increase pigment production in the epidermis of hairless mice. Groups of Skh-2 pigmented hairless mice were treated topically with various concentrations of dopa phosphates daily for five weeks. Half of each group received suberythemal UVB radiation three times weekly for four weeks from a bank of filtered FS20 lamps. UVB and dopa phosphates alone each caused a modest increase in epidermal pigmentation. However, treatment of mice with dopa phosphates plus UVB radiation resulted in a marked increase in pigmentation, greater than with either treatment alone. The optimal concentration of dopa phosphates was 0.01% (100 micrograms/ml Tris-glycerol buffer) whether or not they were applied in conjunction with UVB radiation. Histological analyses revealed that dopa phosphates and UVB radiation each caused an increase in the number of pigmented melanocytes in the epidermis. Control groups treated with Tris-glycerol buffer alone, or buffer containing L-phenylalanine or L-dopa showed no significant changes in pigmentation. Our results indicate that dopa phosphates stimulate the production of melanin and affect the development and distribution of melanocytes in the skin of Skh-2 mice. By these criteria, dopa phosphates and UVB act in a similar manner to increase melanin content in the skin. The processes may be related to those recently observed in cultured mouse melanoma cells where dopa phosphates are incorporated into melanin, presumably following enzymatic hydrolysis by cellular phosphatases with the resultant production of L-dopa and inorganic phosphate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.