Abstract
One-year old tubers of two hybrid calla lily (calla) cultivars (Zantedeschia ‘Pot of Gold’ and ‘Majestic Red’) were inoculated with the arbuscular mycorrhizal fungus (AMF), Glomus intraradices, or not, and grown at three different rates of phosphorus (P) supply to asses the effects of AMF-inoculation on plant development (time of shoot emergence and flowering), flowering (number, length and rate of flowering), and tuber biomass and composition over two growing cycles (2002, 2003). Tubers and flowers of calla responded differently to AMF inoculation. Differences in mycorrhizal responsiveness between cultivars was related to differences in P requirements for flower and tuber production, and the influence of P supply on resource allocation to different reproductive strategies. Inoculation increased shoot production and promoted early flowering, particularly in 2003. Inoculated plants also produced larger tubers than non-inoculated plants, but only increased the number of flowers per plant in 2003. High P supply also increased tuber biomass, but decreased the number of flowers per plant in 2002. Plants grown at a moderate P-rate, produced the most flowers in 2003. For ‘Majestic Red’, benefits from AMF were primarily in terms of tuber yield and composition, and AMF effects on marketable flower production could potentially have negative impact on production strategies for growers. Inoculation of ‘Pot of Gold’ primarily influenced flower production and aspects of tuber quality that caused detectable enhancement of tuber yield and flowering in the second growing cycle following inoculation (2003). The results of this study show that the responses of calla to AMF are partially a function of how nutrient supply alters resource allocation to sexual and vegetative reproduction. Whether AMF-induced changes in resource allocation to flowering and tubers significantly alters commercial productivity and quality of calla depends on the crop production goals (e.g. tubers, cut flowers or potted plants).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.