Abstract

Soils in some parts of the world are known to be severely phosphorus (P) deficient. As little as 20 kg P ha −1 have produced large growth responses in forest stands. If increased tree growth and augmented P cycling are caused by a one-time P application, a valid question is whether the effect of the initial fertilization will be evident in the regenerating forest, thereby reducing the need for P fertilization early in the second rotation. The objective of this study was to evaluate the P status of the forest floor and inorganic P status of mineral surface soil of two long-term fertilizer trials in order to determine if there were increases in soil P amount and bioavailability that benefits the next rotation. Long-term fertilizer trials in Georgia, USA and New Zealand (29 and 22 years after fertilization) were the study sites. In Georgia, forest fertilization increased the mass of the F horizon by 239% and its P content by 318%. Anion exchange membranes measured up to a 47% increase in bioavailable P in the mineral soil in a fertilized treatment. While bioassays did not show significant residual P in the mineral soil under the fertilized plots, soil from an adjacent operationally fertilized stand, which had the forest floor bedded into its planting rows, showed a 100% increase in seedling P content. At the New Zealand site, the mineral soil contained 142% more P in the anion exchange membrane form than in the unfertilized soils. Bioassays indicated a 224% increase in seedling P content when grown in fertilized soil at the highest fertilization rate. Operational levels of fertilization did not yield a significant bioassay result. The data show that there can be a residual effect of fertilizer P in the rotation following fertilization. The bioassays, anion membrane exchangeable P and forest floor P from Georgia suggest that there is enough P in the soil system to support the needs of a regenerating stand of loblolly pine, while residual bioavailable P in the mineral soil from operational levels of fertilization at New Zealand site would require residual P in the forest floor or immediate fertilization to meet the demands of newly planted seedlings. Conservation of the forest floor is an important part of P management in these P deficient sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.